

How should we perform and monitor CSFD to reduce its morbidity

Germano Melissano

Chair of Vascular Surgery, Director of Residency and Postgraduate Programs in Vascular Surgery

"Vita-Salute" San Raffaele University, Milano - Italy

I do not have any potential conflict of interest related to this presentation

Reimplant I.C.

LH BP

Preserve I.C.

MEP & SSEP

ACCEPTED CLINICAL PRACTICE

Preserve Subcl Z & Hypog

Clinical Neuro Monitoring

CSFD: When?

TAAA Open repair

Cerebro Spinal Fluid Drainage GL

CSFD prevents Spinal
Cord Ischemia during
TAAA open repair

Recommendation 6	Class	Level of evidence
Cerebrospinal fluid drainage has a role in the prevention of	lla	В
paraplegia and paraparesis and should be considered during		
extensive open repair of the descending thoracic aorta		

San Raffaele CSFD indications

652 TAAA in the last 8 years

- Always when not contraindicated:
 - Extent I (94.7%)
 - Extent II (94.0%)
 - Extent III (92.9%)
- Selectively:
 - Extent IV (51.6%)

CSFD possible complications

- Headache (4.9 %)
- Tonsillar sagging (0 %)
- Intracranial bleeding (0.4%)
- Subdural hematomas (0.4%)

Contraindication to CSFD

- Intracranial hypertension
- Tonsillar herniation
- Ventriculo-peritoneal shunt
- Arteriovenous fistula
- Cerebral aneurysm
- SC malformations / previous surgery
- Altered coagulation parameters
- Anti-coagulants / double anti-platelets

CSFD: When?

TAAA Endo repair

CSFD during Endo repair

Prophylactic CSFD should be considered in high risk patients for SCI

Recommendation 10	Class	Level of evidence
Patients with planned extensive thoracic aorta coverage (>200 mm) or previous AAA repair have a high risk for spinal cord ischemia and prophylactic cerebrospinal fluid drainage should be considered in endovascular thoracic aorta repair.		С

CSFD complications

Cerebrospinal fluid drainage complications during first stage and completion fenestrated-branched endovascular aortic repair

Jussi M. Kärkkäinen, MD. PhD.^a Nolan C. Cirillo-Penn, MD.^a Indrani Sen, MD.^a Emanuel R. Tenorio, MD. PhD.^a William J. Mauermann, MD, b George D. Gilkey, MD, Timothy J. Kaufmann, MD, MS, and Gustavo S. Oderich, MD, a Rochester, Minn

• 293 F/B-EVAR (2013-2018) CSFD: 187 pts

"Of 13 study patients who developed spinal cord injuries during aortic procedures, 4 (31%) were attributed to CSFD"

San Raffaele CSFD in Endo repair

		CSFD		
	N° procedures	Preoperative n (%)	Postoperative n (%)	Total n (%)
1 st step	66	0 (0)	3 (4.5%)	3 (4.5%)
2 nd step	97	11 (11.3%)	3 (3.1%)	14 (14.4%)
3 rd step	34	2 (5.9%)	0 (0)	2 (5.9%)

Procedures performed under local / general anaesthesia

Automated Drainage System Strengths

 Continuous and Simultaneous Monitoring and Drainage

- No Manipulation
- Limited Sources Of Error
- Patient Comfort In The Ward

Comparative study

	Drip Chamber	Automated	Р
Spinal Cord Ischemia	6.8% (5 cases)	6.3 % (5 case)	NS
Intracranial Haemorrhage	5.4% (4 cases)	0	0.03
Postdural Puncture Headhache	15.1% (11 cases)	5.1 % (4 case)	0.03
30-days Mortality	8.2% (6 cases)	3.8% (3 cases)	NS

Optimize coronary reserve

TEE Monitor

Staging Procedures

OPEN

ROTEM

STABILITY
HYPERTENSION
Hgb > 12

Rapid Pacing

CUSTODIOL

MISACE

Conclusions

- SCI prevention requires optimizing all aspects of the procedures
- CSFD is a valid adjunct, however it comes with several potential serious complications
- The problem is still not solved, more research is needed