THE 26TH INTERNATIONAL EXPERTS SYMPOSIUM
CRITICAL ISSUES
IN AORTIC ENDOGRAFTING
MARCH 21 & 22 2024
COPENHAGEN/MALMÖ
SCANDIC TRIANGELN, MALMÖ
www.critical-issues-congress.com
AI in aortic imaging will improve planning and FU

C Caradu, E Ducasse

Unit of vascular and endovascular surgery
University hospital, Bordeaux, France
Temporal distribution of original articles included in the study. DL: deep learning; ML: machine learning; NLP: natural language processing.
PRAEVAorta: AI using « Deep learning » with U-net network

- Validated for:
 - Pre-operative study of AAA. (1)
 - Immediate post-operative study. (2)

- Time gain: 9 times faster than human
- Volume Similarity: 0.97 ± 0.02
- DSC: 0.95 ± 0.02
- Pearson’s coefficient correlation = .99 (p<.0001)

- Ready for long term follow-up analysis

(1) : Fully automatic volume segmentation of infrarenal abdominal aortic aneurysm computed tomography images with deep learning approaches versus physician controlled manual segmentation (2021, JVS)
(2) : Fully automatic volume segmentation using deep learning approaches to assess aneurysmal sac evolution after infrarenal endovascular aortic repair (2022, JVS)
PRAEVAorta and Planning

Series: Aorte

Exam date: 2018-04-13

Generated on: 2022-03-16

Patient ID: P106

Sex: M

Birthday: 1955-12-18

Diagnostic

- **Inferior max diameter**: ≤2.4 mm
- **Inferior volume**: ≤10.0 cm³

Surgical planning

- **Total lengths**:
 - L2 = 143.0 mm
 - L2 = 143.0 mm

Matching algorithm: identification of the CA, SMA, RAs and CIAs.

Decision rule-based algorithm: identification of extra RAs.

Present work

- **Computed of the vascular tree**

Tomography scan images

Automatic calculation of tortuosity indices and angulations

Fully automated correct labeling of the main aortic branches

Automatic branch detection of the arterial system from abdominal aortic segmentation (2022, Med Biol Eng Comput)
PRAEVAorta report

Sagittal
Coronal

A
P
R
L

ortho_max_diameter
ortho_start_diameter
ortho_max_diameter
ortho_start_diameter
ortho_end_diameter
ortho_middle_diameter
ortho_end_diameter
ortho_middle_diameter
PRAEVAorta applied to follow-up

Median follow-up
CTA : 27 months (IQR : 20-40)
Clinical : 36 months (IQR : 23-45)

TEVAR
With a chimney for the Left subclavian artery

EVAR
With proximal cuff extension (with supra-renal bare stent)
Morphological analysis

Diameters

<table>
<thead>
<tr>
<th></th>
<th>Post-Op</th>
<th>FU (1-5y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum</td>
<td>42.21</td>
<td>24.15</td>
</tr>
<tr>
<td>25% Percentile</td>
<td>52.33</td>
<td>46.13</td>
</tr>
<tr>
<td>Median</td>
<td>55.62</td>
<td>54.34</td>
</tr>
<tr>
<td>75% Percentile</td>
<td>59.25</td>
<td>59.47</td>
</tr>
<tr>
<td>Maximum</td>
<td>95.36</td>
<td>95.44</td>
</tr>
<tr>
<td>Range</td>
<td>53.15</td>
<td>71.29</td>
</tr>
<tr>
<td>Mean</td>
<td>56.92</td>
<td>55.97</td>
</tr>
<tr>
<td>Std. Deviation</td>
<td>9.041</td>
<td>13.35</td>
</tr>
<tr>
<td>Std. Error of Mean</td>
<td>1.198</td>
<td>1.768</td>
</tr>
</tbody>
</table>
Morphological analysis

Volume analysis

Good correlation between Volume and Diameter

<table>
<thead>
<tr>
<th></th>
<th>Global</th>
<th>Lumen</th>
<th>Thrombus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum</td>
<td>-96.96</td>
<td>-92.43</td>
<td>-99.11</td>
</tr>
<tr>
<td>25% Percentile</td>
<td>-23.83</td>
<td>-5.104</td>
<td>-34.98</td>
</tr>
<tr>
<td>Median</td>
<td>-6.122</td>
<td>9.367</td>
<td>-13.47</td>
</tr>
<tr>
<td>75% Percentile</td>
<td>6.730</td>
<td>21.33</td>
<td>8.012</td>
</tr>
<tr>
<td>Maximum</td>
<td>103.7</td>
<td>57.34</td>
<td>217.1</td>
</tr>
<tr>
<td>Range</td>
<td>200.7</td>
<td>149.8</td>
<td>316.2</td>
</tr>
<tr>
<td>Mean</td>
<td>-5.467</td>
<td>4.689</td>
<td>-9.758</td>
</tr>
<tr>
<td>Std. Deviation</td>
<td>33.88</td>
<td>28.93</td>
<td>52.53</td>
</tr>
<tr>
<td>Std. Error of Mean</td>
<td>4.527</td>
<td>3.866</td>
<td>7.083</td>
</tr>
</tbody>
</table>
Illustration of Fisher’s test comparing the distribution observed between the evolution of aneurysmal volume and the evolution of aneurysmal diameters

Aneurysm volume showed a better sensitivity in predicting aneurysm size increase overtime vs Dmax (p=0.0222)

<2mm in Dmax
≈10% in vol

-15mm
<50% in vol
Reference distance for stentgraft disjunction detection: distance from lowest renal artery to stent bifurcation

<table>
<thead>
<tr>
<th>Year</th>
<th>Dmax (mm)</th>
<th>Volume (cm³)</th>
<th>Distance (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td>61.3</td>
<td>290</td>
<td>78.6</td>
</tr>
<tr>
<td>2014</td>
<td>58.6</td>
<td>269</td>
<td>99.7</td>
</tr>
<tr>
<td>2015</td>
<td>55.9</td>
<td>252</td>
<td>113.3</td>
</tr>
<tr>
<td>2019</td>
<td>86.8</td>
<td>641</td>
<td>142.3</td>
</tr>
<tr>
<td></td>
<td>Value (%)</td>
<td>95% CI</td>
<td></td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-----------</td>
<td>-----------------</td>
<td></td>
</tr>
<tr>
<td>PRAEVAorta (vs Senior Surgeon)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensitivity</td>
<td>89.47</td>
<td>80.58 to 94.57</td>
<td></td>
</tr>
<tr>
<td>Specificity</td>
<td>91.25</td>
<td>83.02 to 95.70</td>
<td></td>
</tr>
<tr>
<td>Positive Predictive Value</td>
<td>90.67</td>
<td>81.97 to 95.41</td>
<td></td>
</tr>
<tr>
<td>Negative Predictive Value</td>
<td>90.12</td>
<td>81.70 to 94.91</td>
<td></td>
</tr>
</tbody>
</table>

Endoleak detection

- **Sensitivity**: 89.47 (80.58 to 94.57)
- **Specificity**: 91.25 (83.02 to 95.70)
- **Positive Predictive Value**: 90.67 (81.97 to 95.41)
- **Negative Predictive Value**: 90.12 (81.70 to 94.91)

![Graphs showing Endoleak detection metrics with AUC values: 0.7086 for Sensitivity and 0.6711 for Specificity.](image-url)

- **Lumen**
- **Thrombus**
Predictive performance of volume analysis for MAEs

Major adverse events (MAEs) defined as aneurysm-related death, endoleak, limb occlusion, and reintervention.

<table>
<thead>
<tr>
<th>Elapsed time (months)</th>
<th>MAE / Global volume</th>
<th>MAE / Lumen volume</th>
<th>MAE / Thrombus volume</th>
<th>MAE / Max Diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freedom from MAE (%)</td>
<td>Sensitivity %</td>
<td>Sensitivity %</td>
<td>Sensitivity %</td>
<td>Sensitivity %</td>
</tr>
<tr>
<td>0</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>12 months</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>24 months</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>36 months</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>48 months</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>N at risk</td>
<td>56</td>
<td>34</td>
<td>21</td>
<td>16</td>
</tr>
<tr>
<td>Survival %</td>
<td>-</td>
<td>58.9</td>
<td>50.0</td>
<td>50.0</td>
</tr>
<tr>
<td>95% CI</td>
<td>-</td>
<td>44.9-70.5</td>
<td>35.8-62.6</td>
<td>35.8-62.6</td>
</tr>
</tbody>
</table>

AUC = 0.7806
AUC = 0.5140
AUC = 0.7804
AUC = 0.7277
Work in progress: shear stress analysis and risk of rupture

Registration pipeline. Registered aneurysm

1. Patient does the CT scan
2. Aneurysm, $d_{max} > 5$ cm
3. Surgery (EVAR/OSI)
4. Patient follow-up

$P = (p, \delta)$ before surgery
$\{\tilde{P}, \tilde{\delta}\}$ after surgery

Geometrical modeling
Iterative Closest Point
Displacement profiles
Comparison of fully automatic segmentation using PRAEVAorta2 for diameters and volumes
82 patients with arterial, venous and non-contrast phase CT

<table>
<thead>
<tr>
<th>Fully automatic segmentation</th>
<th>Arterial phase (ground truth)</th>
<th>Venous phase</th>
<th>p value</th>
<th>Non-contrast phase</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max aortic transverse diameter (mm)</td>
<td>60.2±12.4</td>
<td>61.8±18.7</td>
<td>.476</td>
<td>60.4±17.3</td>
<td>.540</td>
</tr>
<tr>
<td>Global Volume (cm³)</td>
<td>298.2±125.9</td>
<td>295.8±16.4</td>
<td>.445</td>
<td>288.5±125.4</td>
<td>186</td>
</tr>
<tr>
<td>Lumen Volume (cm³)</td>
<td>153.8±62.0</td>
<td>159.5±64.7</td>
<td>.014</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Thrombus Volume (cm³)</td>
<td>138.0±90.5</td>
<td>130.6±89.7</td>
<td>.074</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Time for analysis (sec)*</td>
<td>213.9±102.7</td>
<td>114.4±36.1</td>
<td><.001</td>
<td>140.0±288.7</td>
<td><.001</td>
</tr>
</tbody>
</table>

PRAEVAorta®2 algorithms produce comparable results for assessing Dmax and Vmax across the 3 different phases.

Optimize AAA FU by identifying at-risk patients from non-dedicated scans or non-contrast CTs

- number of scans / patient
- healthcare costs
- patient exposure to radiation and contrast media
84 yo patient: Comparison of angio CT scans

from 2021

from 2023
Automated segmentation of the infra renal aorta with analysis:

- Max diameter
- Global volume/ lumen, wall volume
- Neck diameters, lengths and volumes
Neck enlargement
Plan for FEVAR for increasing risk of type Ia EL after EVAR ??

Infrarenal Maximal Diameter: 56.4 mm
Volume Infrarenal: 144.0 cm³

Infrarenal Maximal Diameter: 67.5 mm
Volume Infrarenal: 166.6 cm³
Take Home Message

- **AI**
 - **Surgical planning**
 - with all important measurements and automatic branch detection
 - **Follow-up**
 - Global volume = better predictive value vs Dmax
 - Detect endoleak, and predict complications
 - Neck enlargement = seems important to monitor (not done in current practice)

- **AI = Big Diagnostic help**
 - More Patients, more CT-scans analyzed, easier and quicker surveillance
 - Detect patients at risk of reintervention and rupture early on
Thank you for your attention